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We consider a simple one-dimensional model to study the ef-
fects of the beam-beam force on the coherent dynamics of collid-
ing beams. The key ingredient is a linearized beam-beam kick.
We study only the guadrupole modes, with the dynamical vari-
ables being the 2nd-order moments of the canonical variables
g, p. Our model is self-consistent in the sense that no higher-
order moments are generated by the linearized beam-beam kicks,
and that the only source of violation of symplecticity is the radia-
tion. We discuss the round beam case only, in which vertical and
horizontal quantities are assumed to be equal (though they may
be different in the two beams). Depending on the values of the
tune and beam intensity, we observe steady states in which oth-
erwise identical bunches have sizes that are equal, or unequal, or
periodic, or behave chaotically from turn to turn. Possible impli-
cations of luminosity saturation with increasing beam intensity
are discussed. Finally, we present some preliminary applications
to an asymmetric collider.

Introduction

The study of the coherent modes of oscillation of colliding
beams has a long history, with many contributions to this im-
portant and difficult problem; space limitations prevent us from
giving here a full set of references[l]. A while ago Hirata[2]
proposed a simplified model to study the problem including the
essential coupled-beam features, but is in principle inconsistent
with Vlasov's equation because it assumes a bunch distribution
that remains Gaussian at all times. However, it explains quali-
tatively the “flip-flop” effect and the saturation of the luminos-
ity and beam-beam parameter at high intensity. Furthermore,
a Gaussian bunch shape is generally accepted as being a good
approximation to a self-consistent solution, so the numerical re-
sults from this model may be reasonable despite the theoreti-
cal inconsistency; in fact, a more recent [3] approximation which
tales into account higher-order moments improves the agreement
with multiparticle simulations. We summarize here the results
of & simpler model[4], defined along similar lines, that has the
virtue of being fully self-consistent (i.e., symplectic in the ab-
sence of radiation, with Gaussian beams remaining Gaussian)
since it involves the essential ingredient of a linearized beam-
beam force. Several of the features are derived analytically. The
consistency with Vlasov’s equation is achieved at the price of ig-
noring Maxwell’s equations altogether, since the force is assumed
to be linear at all distances while the bunch size is finite. This
is clearly not a good approximation for any reasonable distri-
bution. However, since we study only the quadrupole modes of
beams that collide head on, the linear part of the force has the
most important effect, and in this sense it is reasonable to make
such an approximation. By comparing our results with Hirata’s
we hope to determine those features that are generic to this type
of model.

i Paper contributed to the Third Advanced ICFA Beam Dynamics Workshop,
May 29-June 3, 1989, Novosibirsk, USSR.

* Operated by the Universities Research Association, Inc. for the U. S. De-
partment of Energy.

Model (symmetric case)

Ingredients

We consider a collider composed of two rings with identical
linear lattices and common tune 1y, a single interaction point,
and one bunch per beam with the same number of particles N
and same energy. We label them the et and e” bunches, al-
though our discussion allows for like-charged beams (e*e®) just
as well. The bunches collide head-on. We consider only the dy-
namics in pne dimension, say the vertical, described by v, ¥/,
and define the normalized coordinates ¢, p for a particle in each
beam as qi = yi/\/B; and py = (Byyh + ayy+)/+/By. Note
that B, is the “bare” lattice function, i.e., it does not include
any corrections due to the beam-beam interaction. We represent
the beam-beam interaction by the linearized kick
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where k4 is the dimensionless strength of the kick,

by = L Ll R (2)
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This is the only source of coupling and of nonlinearity since the
strength of the kick on the + beam, k_, depends inversely on the
size of the opposing bunch, o, which is a dynamical variable, as
is 0. In the above rg is the classical radius of the particle, v the
usual relativistic factor and fi the kick’s focal length. The —
sign in front of k% in Eq. (1) implies the convention that ks > 0
for attractive kicks (opposite-charged beams). We consider here
only the extreme case of round-beam shape, o, = o, = ¢. In
terms of the nominal beam-beam parameter £y, we have
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where e and oy are the nominal, equilibrium emittance and beam
size (we assume that f; = fy = B and e = ¢ = ¢ for
this round-beam case) and {4 are the actual, dynamically de-
termined, beam-beam parameters. Note that in the weak-beam
limit £ is the tune shift of the — beam and viceversa. The anal-
ysis of the flat-beam case, in which k o« 1/0 rather than 1/o?,
can be carried out analogously [4].

Following Hirata[2], we represent the effect of the synchrotron

radiation loss and its compensation by the RE cavities by the
stochastic localized kick
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where the 7y are independent random numbers with (fy) =
(f47-) = 0 and (f1) = 1, and X is related to the damping
decrement of the ring § by A = exp(—26) (we assume the rings
to have equal damping decrements). The first term in the above
equation describes the damping due to the energy loss by radi-
ation, and the second term the noise induced by the RF cavity
that restores the energy to the particle.

The third and final ingredient is a linear transport through a
phase advance 27y, given by
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where C' = cos(2m1y), S = sin(2m1y).

The bunches undergo collision, transport, radiation, collision,
ete. The one-turn map for a given particle has a stochastic in-
homogeneous part arising from the last term in Eq. (4). A
deterministic (but still inhomogeneous) map is obtained for the
bilinear combinations of ¢ and p and averaging these over all ra-
diation events in each bunch. In this way we convert the problem
into the study of a 6-dimensional map for the second-order mo-
ments (3 for each beam) of the bunch distributions. Since the
beam-beam kick is linear, the second order moments characterize
the problem completely (assuming head-on collisions) because no
higher-order moments can be generated. With a surface of sec-
" tion just before the beam-beam kick we find
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where the 3 x 3 matrix ]T/f(k,n) depends on (q2_>n , o, Aand &
(there is a simultaneous companion map with + « —). In prac-
tical calculations we use the dimensionless moment vectors X =

((a2), (ap+), (3)) feo and Y = ((g2),(g-p-),(p2)) /o0 s0
that, with e = (0,0,1), the full 6-dimensional one-turn map reads

Xngt = M(Y12)Xn 4 (1 — Ae
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The basic dynamical physical quantities that we are interested
in studying from the map are the beam sizes o1 and emittances
€4 given by

Blak),
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from which we can extract “observables” such as the luminos-
ity and the beam-beam parameters £, relative to their nominal
values.
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Digression on the Radiation Kick ‘

(4), is constructed so that, if the
beam-beam force is turned off, the beam decays exponentially to

The radiation kick, Eq.

an equilibrium configuration Xeq = Yeq = (1,0,1) which corre-
sponds to a beam ellipse that is matched to the bare lattice, with
emittance equal to the nominal value, e = ¢.
that this “fixed point” is absolutely stable, i.c.,

It can be shown
it is reached

from any initial state provided only the tune vy is not too close
to 0 (how close depends on the damping decrement §, which
we assume small). In the decay process the beam emittance
changes with every passage through the radiation kick according
to € = \2e2 4 (1 - Xe (q ) unti] it reaches the nominal equi-
librium value. We regard this process as a simple physical model
of the damping that occurs in an actual electron storage ring.

Actually Eq. (4) has been questioned and alternatives have
been proposed. Hirata and Ruggiero [5] propose a kick symmetric

in ¢ and p,
(q:) -—“\/X(q)—i— 60(1—/\)(7j1) (9)
P p T2

where (72) = (#2) = 1, (1) = (f3) = (f172) = 0. In the absence
of the beam-beam interaction this form for the radiation kick also
has an absolutely stable equilibrium configuration X, = (1,0, 1)
whose emittance has the nominal value. An arbitrary initial state
decays exponentlaﬂy to it with the emittance changing at each
step according to e? = \2¢2 +(1=A)2E2+A(1— )\)eo(< D+ (™).

Krishnagopal and Siemann 6] propose a similar expression,

()=
P

where (ri1) = (ry) = (rir3) = 0, < > = (¢%) / (p?) and
<rg> = +/(p?)/ <q2). This kick is supposed to be used only
at a symmetry point of the lattice, where (gp) = 0 by symme-
try. It differs from the previous expressions in that the noise
term has a dynamical dependence on the beam. In the absence
of beam-beam interaction it, too, has an absolutely stable equi-
librium state X¢q = (1,0,1) with nominal emittance. An initia]
state with arbitrary emittance decays to it exponentially with a
turn-by-turn change in the emittance given by € = Ae+(1—\)eg.
This equation shows that, if the initial state is not completely
arbitrary but has an emittance € = €y, then the emittance is pre-
served at every turn at 1ts nominal value. Since the beam-beam
force is symplectic, this property remains true when the beam-
beam interaction is operating. The authors of (10) claim this
property to be essential, and they use the above expression for
the kick in multiparticle tracking simulations in which the beams
have nominal emittance only, which is therefore guaranteed to be
preserved.

(10)
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Our (limited) experience shows that the above three forms of
the radiation kick yield qualitatively similar results except possi-
bly for very intense beams, although the algebraic expressions in
analytical calculations are quite different. We adopt the point of
view that the simpler the model for the radiation kick the better,
provided only that in the absence of the beam-beam interaction
the beam should decay from any initial state to the equilibrium
state with that is matched to the bare lattice, which has nominal
emittance. We regard the emittance nonconservation of (4) as a
virtue, since this property emulates the pehavior of beams out of
equilibrium. When the beam-beam force is included our model
yields a variety of steady-state solutions, which may or may not
be constant in time. The emittances and beam sizes of these so-
lutions are not, in general, equal to their nominal values, and are
obtained as output quantities. Expression (4) has the additional
virtue of yielding simple analytic expressions for the period-one
fixed point.



Results

Period-One Fixed Points

We first seek steady solutions by setting (---),.; = (--+), In
(6) for all six moments, which yields a set of two equations for
<q_2‘_> and <q3> By defining ky = (A + 1)z, k- = (A 4+ Dy,
p=dw&o/(A+1) and x = cot(2mwy), we obtain

a/p=1+2y—v", y/p=1+2x -2’ (11)
These equations admit solutions with z = y (equal-size beams,
or “normal solutions”), and with = # y (unequal-size beams,
or “flip-flop solutions”) which can be found analytically in a
straightforward way. Note that they depend on 14 and p, but do
not depend separately on A; also note that p o beam intensity
N. Once z and y are found, the specification of the fixed point is
completed by finding the moments (pg) and <p2>. These are also
obtained from Eq. (6), which yields very simple algebraic ex-
pressions in terms of (qi) In order to be physical, the solutions
must be real and have the same sign. The normal solutions are
always real: the positive solutions are physical for the ete™case,
the negative solutions for the e* etcase. The flip-flop solutions,
on the other hand, are physical only in certain regions of the
vg — p plane, which is shown shaded in Fig. 1. Round beams do
not admit efe® flip-flop solutions, but this not true in the flat-
beam model, which does admit them[4]. In addition to being
real, the solutions must be stable. This is determined from the
eigenvalues of the 6 X 6 stability matrix, which is obtained by ex-
panding the map infinitesimally close to the fixed point. Results
for the size and stability of the ete™ case are shown in Fig. 2,
for the specific case of ¥y = 0.15 and 6 = 0.07 (A = 0.8694). The
normal solutions are stable only in 0 < p S 0.3; since & ~ p/27,
this corresponds to 0 < & S 0.048. Flip-flop solutions are real
only in the interval 1 S p 2 (0,16 S £ S 0.32) with one beam
growing in size rapidly as p increases. Hawever, they are stable
ouly in the regions 1.1 S p & 1.3 and 1.6 & p S 2. In those
regions of p where neither the normal or the flip-flop solutions
are stable other type of solutions appear, such as higher-order
fixed points, as we now describe.
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Fig. 1. Region where the round-beam flip—flop solutions
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utions are always complex.
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fixed point solutions (sclid=stable, dots=unstable).
Round—beam case, v=0.15, A=0.8694.

Iteration of the Map

By starting with a given set of values for the 6 moments
we iterate the map (7) until it converges or diverges. All re-
sults presented here are for the ete~case, for vg = 0.15 and
§ = 0.07 (A = 0.8694). This is an unrealistically large value of
§; however, because our model is symplectic in the absence of
radiation, all our results have a smooth A — 1 limit, and are
quantitatively similar for any A sufficiently close to 1 (a large 6
has the practical advantage of fast convergence of the map it-
eration). Results are shown in Fig. 3. Dots represent chaotic
behavior, in which the two beams are preferentially of differ-
ent size; + represents period-1 fixed peints, in which the beams
are of equal or unequal size, depending on the value of p (they
correspond to the beam sizes shown in Fig. 2); x, ¢ and ©
represent period-2, -3, and ~4 fixed points with beams of equal
size. Other types of solutions may well exist, but are hard to
find. If more than one solution is possible, the one to which the
map converges depends on the initial conditions. For p ~ 0.3
the chaotic solutions are the most stable. For other values of p,
generally speaking, the period-1 fixed point is the most stable
unless it coexists with higher-order fixed points. In this case the
the period-3 fixed point is the most stable. By “most stable”
we mean that this solution is the most likely one to be reached
when varying the initial conditions.

The effects of the map can be evaluated by looking at “ob-
servables” such as the luminosity or the effective beam-beam
parameter, which depend on the actual (i.e., dynamically deter-
mined) beam sizes. Thus a quantity that measures the physical
effects of our model is the “enhancement factor” E defined by

E=L/Lo=E/,

E = _ 2e0 (12)

(¢h) + ()

which we plot in Fig. 4 (for the higher-order fixed points, for
which E varies from turn to turn, we compute its average over
the period of the most stable fixed point). Note the saturation
effect due to chaotic behavior and higher-order fixed points.
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Asymimetric Case

Recently asymmetric colliders have been proposed as high-
Iuminosity “factories” for the study of specific particles such as
beauty mesons|7]. We present in the following the results of a
brief, ongoing and preliminary study of applying our model to
asyminetric colliders. There are two asymmetries: the lattices
can be different, and the beams can be different, although we
still assume that they are round. The rings have tunes vg4,
damping decrements 64+ and beta-functions f+. The bunches
have Ny particles, energy /mass 74 and nominal emittances eg.
The dynamical and nominal beam quantities are '

2
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with o1 = Bx <qi) In addition, we simulate the effect of the
longitudinal dynamics by modulating the tunes according to

Vot — V4 = Vot + A:l: sin(ysin),
A = OstVst
20+

where vs4 and 0,4 are the synchrotron tunes and bunch lengths,
and n = turn number.

(14)

In order to describe the beam asymmetry we use in what
follows four quantities: average nominal (§) and dynamical (¢)
beam-beam parameters, and nominal (4p) and dynamical (A)
beam asymmetry parameters, defined by

_ _ Cot — bo-
o= (ot +60-)/2, Ay= for T E0 )
= S
£~(£++E—)/2’ A“E-}‘I‘&—

Typically we use as inputs £ and Ap; thus the nominal beam-
beam parameters are given by o = &1 % Ap). Obviously
a corresponding expression exists for the dynamical parameters

£t

Fig. 5 -shows £ vs. {p for various values of Ay for a collider
with symmetrical rings with tune vy = 0.765, damping decrement
6 = 0.005 and no tune modulation, showing a saturation at § ~
0.07. Although we do not show £, and é_ individually, typically
£ grows linearly for all values of &, while . grows linearly at
small £y, reaches a maximum and goes back down to 0 at large
£o0. There is beam instability beyond £y o~ 0.14.

Fig. 6 shows the dynamical asymmetry parameter A vs. £ for
various values of Ag, for the same symmetric collider parameters
as in Fig. 5. Note that the dynamics causes an increase in
asymmetry (A grows from A = Ag at & = 0 to A = 1 at large
£o)- When A = 1 it means that one beam is strong and the other
one is infinitesimally weak. Note also the spontaneous breaking
of the symmetry for the symmetric case, 4p = 0, at & = 0.12;
this breaking is as likely to yield A > 0 as it is to yield A < 0,
but for convenience we show only the first case.

Fig. 7 is similar to Fig. 6, except that we have added tune
modulation, which causes seemingly unpredictable changes in the
dynamical asymmetry A above £ ~ 0.03. Actually these effects
occur after many turns, on the order of 10%; for the first ~ 10%
turns the results are similar to those of Fig. 6 (the synchrotron
period is ~ 19.2 turns).

Fig. 8 again shows A wvs. &, this time for an asymmetric
collider, as the parameters at the right indicate (these corre-
spond to APTARY [7]). Note the competition between the beam
asymmetry and the lattice asymmetry: at low £y the dynamical
asymmetry A decreases from its nominal positive value Ag. This
means that it is the — beam that “wants” to be the strong one,
even though it is nominally the weak one. However, at £ ~ 0.03
the competition becomes unstable and the dynamics forces the
beams to a strong-weak state (4 = +1). In fact it is so unsta-
ble that which beams becomes strong and which weak depends
more on the initial beam configurations than the asymmetry in
the dynamics.

Conclusions

For the symmetric. case:

(1) For low beam intensity (small p), only normal (constant,
equal beam size) solutions exist and are stable, as it should be
expected.
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(2) As the intensity is increased, other splutions appear which
cause the qhauge in behavior of the luminosity from « I 240 oc I ,
and the saturation of beam-beam parameter at §o ~ p/27 ~
0.043. The saturation mechanism is due to the appearence of
a chaotic region followed by a higherrorder fixed point rather
than to a bifurcation. This seems to be a generic difference with
Hirata's result [2].

(3) For g given tune, flip-flop solutions always exist and are
real in a range of values of p. However, they are not always stable,
and are unnatural for small p. By this we mean that they require
a delicate relationship between vy and p, as can be seen from Fig.
1. Therefore the flip-flop effect may have a natural explanation
in our model only for unrealistically high beam intensities, This
seems to be in qualitative agreement with Hirata’s model. Tt
should be interesting to decide whether higher-order fixed points
occur in other models; otherwise they might be an artifact of
the linearization of the beam-beam force. These higher-order
fixed points are confirmed by multiparticle tracking simulations
for the linear-force model [8].

For the asymmetric case;

(1) In the absence of tune modulation the beam asymmetry
grows with intensity from its nominal value.

(2) In the presence of tune modulation the dynamical asym-
metry seems unpredictable after many turns; we do not presently
understand even the systematics of this behayior.

(3) It is possible to compensate beam asymmetries with lattice
asymmetries, but the equilibrium reached seems fairly unstable,
except at low intensities. It should be interesting to see whether
this is alsp true of more realistic models for the beamrbeam forge.
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